

Best practices for portfolio rebalancing

Vanguard research July 2010

Executive summary. The primary goal of a rebalancing strategy is to minimize risk relative to a target asset allocation, rather than to maximize returns. A portfolio's asset allocation is the major determinant of a portfolio's risk-and-return characteristics. Yet, over time, asset classes produce different returns, so the portfolio's asset allocation changes. Therefore, to recapture the portfolio's original risk-and-return characteristics, the portfolio should be rebalanced.

In theory, investors select a rebalancing strategy that weighs their willingness to assume risk against expected returns net of the cost of rebalancing. Our findings indicate that there is no optimal frequency or threshold when selecting a rebalancing strategy. This paper demonstrates that the risk-adjusted returns are not meaningfully different whether a portfolio is rebalanced monthly, quarterly, or annually; however, the number of

Authors

Colleen M. Jaconetti, CPA, CFP® Francis M. Kinniry Jr., CFA Yan Zilbering

¹ Assuming a well-diversified portfolio that engages in limited market-timing.

rebalancing events and resulting costs (taxes, time, and labor) increase significantly. (For instance, monthly rebalancing with no threshold would require 1,008 rebalancing events, while annual rebalancing with a 10% threshold would require only 15 rebalancing events.) As a result, we conclude that for most broadly diversified stock and bond fund portfolios (assuming reasonable expectations regarding return patterns, average returns, and risk), annual or semiannual monitoring, with rebalancing at 5% thresholds, is likely to produce a reasonable balance between risk control and cost minimization for most investors. Annual rebalancing is likely to be preferred when taxes or substantial time/costs are involved.

Return data for Figures 1 through 8 and Appendixes A-1 and A-2 of this paper are based on the following stock and bond benchmarks, as applicable: Stocks are represented by the Standard & Poor's 90 from 1926 through March 3, 1957; the S&P 500 Index from March 4, 1957, through 1974; the Wilshire 5000 Composite Index from January 1, 1975, through April 22, 2005; and the MSCI® US Broad Market Index from April 23, 2005, through December 31, 2009. Bonds are represented by the S&P High Grade Corporate Index from 1926 through 1968; the Citigroup High Grade Index from 1969 through 1972; the Lehman Long-Term AA Corporate Index from 1973 through 1975; and the Barclays Capital U.S. Aggregate Bond Index from 1976 through 2009.

Vanguard believes that the asset allocation decision—which takes into account each investor's risk tolerance, time horizon, and financial goals—is the most important decision in the portfolio-construction process. This is because asset allocation is the major determinant of risk and return for a given portfolio.2 Over time, however, as a portfolio's investments produce different returns, the portfolio will likely drift from its target asset allocation, acquiring risk-andreturn characteristics that may be inconsistent with an investor's goals and preferences. Portfolio rebalancing is extremely important because it helps investors to maintain their target asset allocation. By periodically rebalancing, investors can diminish the tendency for "portfolio drift," and thus potentially reduce their exposure to risk relative to their target asset allocation.

Notes on risk: All investments are subject to risk. The performance data shown represent past performance, which is not a guarantee of future results. The performance of an index is not a representation of any particular investment, as you cannot invest directly in an index. Investment returns will fluctuate. Investments in bond funds and ETFs are subject to interest rate, credit, and inflation risk. ETF shares can be bought and sold only through a broker (who will charge a commission) and cannot be redeemed with the issuing fund. The market price of ETF shares may be more or less than net asset value.

² See Brinson, Hood, and Beebower (1986); Brinson, Singer, and Beebower (1991); Ibbotson and Kaplan (2000); and Davis, Kinniry, and Sheay (2007).

As part of the portfolio-construction process, it is important for investors to develop a rebalancing strategy that formally addresses "how often, how far, and how much": that is, how frequently the portfolio should be monitored; how far an asset allocation can be allowed to deviate from its target before it is rebalanced; and whether periodic rebalancing should restore a portfolio to its target or to a close approximation of the target. While each of these decisions has an impact on a portfolio's risk-and-return characteristics, the differences in results among the strategies are not very significant. Thus, the how often, how far, and how much are mostly questions of investor preference. The only clear advantage for any of these strategies, as far as maintaining a portfolio's risk-and-return characteristics, and without factoring in rebalancing costs, is that a rebalanced portfolio more closely aligns with the characteristics of the target asset allocation than a portfolio that is never rebalanced.

This paper's discussion begins with a review of the significant rebalancing opportunities into equities over the past 80 years. We then establish a theoretical framework for a rebalancing strategy, which is that investors should select a rebalancing strategy that balances their willingness to assume risk against expected returns net of the cost of rebalancing. In several scenarios, we explore the trade-off between various potential rebalancing decisions and a portfolio's risk-and-return characteristics. Finally, we review practical rebalancing considerations, emphasizing rebalancing for risk control, not return maximization.

Costs of rebalancing

Throughout this paper, the term *costs of rebalancing* refers to:

- Taxes (if applicable): If rebalancing within taxable registrations, capital gains taxes may be due upon the sale if the asset sold has appreciated in value.
- Transaction costs to execute and process the trades: For individual securities and exchange-traded funds (ETFs), the costs are likely to include brokerage commissions and bid-ask spreads.* For mutual funds, costs may include purchase or redemption fees.
- Time and labor costs to compute the rebalancing amount: These costs are incurred either by the investor directly or by a professional investment manager. The costs may include administrative costs and/or management fees, if a professional manager is hired.

Keep in mind that in addition to these costs, there may be trading restrictions that could limit the frequency of transacting on the accounts. Finally, since there is little difference in the results between the frequencies analyzed, these costs would suggest that less-frequent rebalancing (i.e., annually or semiannually, rather than daily) would be preferred.

^{*}The bid-ask spread is the difference between the highest price a buyer is willing to pay for an asset and the lowest price a seller is willing to accept for it.

Range of calendar-year returns for U.S. stocks: 1926 through 2009 Figure 1. 10 2006 2003 1997 1988 1999 1990 2007 2004 1986 1998 1991 1969 2005 1993 1996 1985 2001 1994 1982 2009 5 1971 1980 2000 1962 1981 1992 1972 1983 1989 1973 1946 1977 1987 1978 1968 1964 1967 1979 1955 1995 1966 1940 1953 1984 1956 1965 1952 1963 1976 1950 1975 2008 2002 1957 1932 1939 1970 1948 1959 1949 1951 1961 1938 1945 1958 1954 1931 1937 1974 1930 1941 1929 1934 1960 1947 1926 1944 1942 1943 1936 1927 1928 1935 1933 -35% -35% -30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% or to more -30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

Notes: All returns are in nominal U.S. dollars. For benchmark data, see box on page 2. Sources: Vanguard calculations, using data from Standard & Poor's, Wilshire, and MSCI.

For many investors, rebalancing can be difficult

It is not uncommon following significant declines in the equity markets (as in the –37%-plus decline in the U.S. stock market in 2008) for investors to question the benefits of rebalancing. Although the magnitude of the recent decline was surprising, negative stock returns should not have been totally unexpected. In retrospect, the average annualized return of equities from 1926 through 2009 was 9.93%; however, the annual return of stocks during that period ranged from 54% to –43% (see also Figure 1), with a loss in approximately one out of every four years (25 of the 84 years had a negative return).

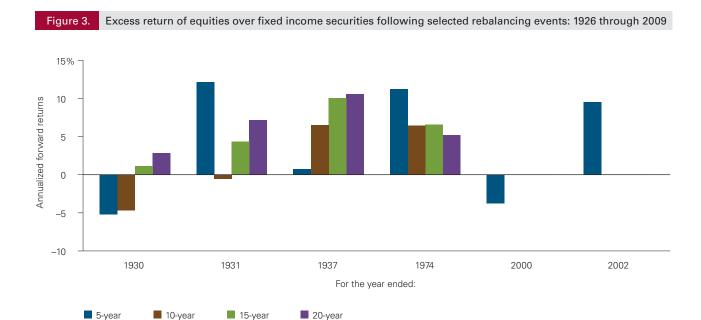
Understandably, during the recent market crisis, poor investment performance coupled with considerable uncertainty about the future made it seem counterintuitive for investors to rebalance their portfolios by selling their best-performing asset classes and committing more capital to underperforming asset classes. However,

historically, significant rebalancing opportunities into equities have occurred after strongly negative market events. A look back at other historically significant rebalancing opportunities—defined here as occurring when a hypothetical 60% stock/40% bond portfolio has deviated from its rebalancing threshold by at least 5 percentage points—shows that investors who had a plan and maintained their target allocation by rebalancing during trying times in the markets have typically been rewarded over the long term. Since 1926, a rebalancing opportunity into equities has occurred on only seven occasions: 1930, 1931, 1937, 1974, 2000, 2002, and 2008.4 At each of these times, as shown in Figure 2, the trailing one-year returns were extremely poor, and the outlook for the equity markets was bleak.

Investors who did not rebalance their portfolios by increasing their allocation to equities at these difficult times may have not only missed out on the subsequent equity returns but also did not maintain the asset-class exposures of their target asset allocation.

³ Stocks are represented by the Standard & Poor's 90 from 1926 through March 3, 1957; the S&P 500 Index from March 4, 1957, through 1974; the Wilshire 5000 Composite Index from January 1, 1975, through April 22, 2005; and the MSCI US Broad Market Index from April 23, 2005, through December 31, 2009. All returns are in nominal U.S. dollars.

^{4~} Assuming a 60% stock/40% bond portfolio and annual rebalancing with a threshold of 5%.


Figure 2.	Equity returns during rebalancing
	opportunities: 1926 through 2009

For the year ended	1-year trailing return	3-year trailing return	Equity allocation prior to rebalancing
1930	-24.8%	-0.4%	48.0%
1931	-43.1	-26.7	46.3
1937	-34.7	8.8	48.7
1974	-26.3	-9.2	47.9
2000	-10.9	10.8	54.5
2002	-20.9	-14.4	46.9
2008	-37.0	-8.4	47.0

Notes: All returns are in nominal U.S. dollars. Figure assumes a 60% stock/ 40% bond portfolio and annual rebalancing with a threshold of 5%. For benchmark data, see box on page 2.

Sources: Vanguard calculations, using data from Standard & Poor's, Wilshire, MSCI, Citigroup, and Barclays Capital.

Figure 3 shows the average annualized returns for the 5, 10, 15, and 20 years following six of those rebalancing events into equities (note that only the 5-year return is shown for 2002). As expected, the only occasions when the average annualized returns for fixed income securities exceeded the returns for equities for the same time period were in the shorter time horizons. Over longer time horizons, investors expect to be compensated for the additional risks associated with investing in equities. For each of the 15- and 20-year periods, the annualized returns for equities exceeded the comparable returns for bonds over the same period. (See Appendix A, for the underlying return data.) As for the forward-looking returns for 2008, time will tell; however, we are off to a good start, considering that the U.S. equity market returned more than 28% in 2009.

Notes: This illustration does not represent the return on any particular investment. All returns are in nominal U.S. dollars. For benchmark data, see box on page 2. See Appendix A, for underlying return data.

Sources: Vanguard calculations, using data from Standard & Poor's, Wilshire, MSCI, Citigroup, and Barclays Capital.

Figure 4.

Market-risk data for various hypothetical asset allocations: 1926 through 2009

Asset allocation	Nominal average annualized return	Real average annualized return
100% bonds	5.5%	2.4%
20% stocks/80% bonds	6.7	3.6
30% stocks/70% bonds	7.3	4.1
40% stocks/60% bonds	7.8	4.6
50% stocks/50% bonds	8.2	5.1
60% stocks/40% bonds	8.7	5.5
70% stocks/30% bonds	9.0	5.9
80% stocks/20% bonds	9.4	6.2
100% stocks	9.9	6.7

Notes: This illustration does not represent the return on any particular investment. All returns are in nominal U.S. dollars. For benchmark data, see box on page 2.

Sources: Vanguard calculations, using data from Standard & Poor's, Wilshire, MSCI, Citigroup, and Barclays Capital.

It is important to recognize that the goal of portfolio rebalancing is to minimize risk (tracking error) relative to a target asset allocation, rather than to maximize returns. If an investor's portfolio can potentially hold either stocks or bonds, and the sole objective is to maximize return regardless of risk, then the investor should select a 100% equity portfolio.⁵ This is not the case for most investors, however. Typically, an investor is more concerned with downside risk (or the risk that the portfolio will drop in value) than with the potential to earn an additional 0.50 percentage point to 0.75 percentage point for each 10% increase in equity allocation, as shown in Figure 4's marketrisk data for various hypothetical asset allocations.

Times of distress in the equity markets are not the only times that investors are reluctant to rebalance their portfolios. Despite their loss-aversion tendency, many investors are equally loath to rebalance during

bull markets for equities. They seem to fall prey to "it's different this time," and they hesitate to sell asset classes that have had exceptional performance in order to purchase assets that have had even "average" or "expected" performance. These investors, however, can end up with a portfolio that is overweighted to equities and therefore more vulnerable to equity-market corrections, putting the investors' portfolios at risk of larger losses compared with their target portfolios. We next discuss the trade-off between rebalancing decisions and a portfolio's risk-and-return characteristics.

Trade-offs in the rebalancing decision

Similar to the selection of a portfolio's target asset allocation, a rebalancing strategy involves a trade-off between risk and return. The more risk an investor is willing to assume, the higher the expected return over the long term (known as the risk premium). If a portfolio is never rebalanced, it tends to gradually drift from its target asset allocation as the weight of higher-return, higher-risk assets increases. Compared with the target allocation, the portfolio's expected return increases, as does its vulnerability to deviations from the return of the target asset allocation.

Consider two hypothetical portfolios, each with a target asset allocation of 60% stocks/40% bonds for the period 1926 through 2009; the first portfolio is rebalanced monthly, and the second portfolio is never rebalanced. Consistent with the risk-premium theory, the never-rebalanced portfolio's stock allocation gradually drifts upward (see Figure 5), to a maximum of approximately 99% stocks and 1% bonds. As the never-rebalanced portfolio's equity exposure increases, the portfolio displays higher risk (a standard deviation of 14.4% versus 12.1% for the monthly rebalanced portfolio) and a higher average annualized return (9.1% versus 8.5%, respectively).

⁵ Assuming a portfolio of equity and fixed income investments; allocations to alternative asset classes or investments were not considered.

Figure 5.

Comparing results for monthly versus never rebalancing for two 60% stock/ 40% bond portfolios: 1926 through 2009

1926 through 2009	Monthly rebalanced	Never rebalanced
Maximum stock weighting	68%	99%
Minimum stock weighting	52	36
Final stock weighting	61	98
Average annualized return	8.5%	9.1%
Annualized standard deviation	12.1	14.4

Notes: This illustration does not represent the return on any particular investment. Assumes a portfolio of 60% stocks/40% bonds. All returns are in nominal U.S. dollars. For benchmark data, see box on page 2.

Sources: Vanguard calculations, using data from Standard & Poor's, Wilshire, MSCI, Citigroup, and Barclays Capital.

A rebalancing strategy measures risk and return relative to the performance of a target asset allocation (Leland, 1999; Pliska and Suzuki, 2004). The decisions that can determine the difference between a portfolio's actual performance and that of the portfolio's target asset allocation include how frequently the portfolio is monitored, the degree of deviation from the target asset allocation that triggers a rebalancing event; and whether a portfolio is rebalanced to its target or to a close approximation of the target.

First we address ways an investor can determine when to trigger a rebalancing event. Although various triggers can be used, we focus primarily on the following three:

- A "time-only" strategy, which triggers a rebalancing event based on a set time schedule such as monthly, quarterly, annually, and so on.
- A "threshold-only" strategy, which triggers a rebalancing event when a portfolio deviates from its target asset allocation by a predetermined

- minimum percentage, such as 1%, 5%, 10%, and so on. Note that the nature of this strategy requires daily monitoring, because otherwise investors cannot determine how often a rebalancing event should occur.
- A "time-and-threshold" strategy, which combines
 the "time-only" and "threshold-only" strategies.
 In other words, the portfolio is monitored on
 a set time schedule, but is rebalanced only if
 the allocation deviates from the target by the
 predetermined minimum rebalancing threshold
 at that time.

Strategy #1: 'Time-only'

When using the "time-only" strategy, the portfolio is rebalanced every day, month, quarter, or year, and so on, regardless of how much or how little the portfolio's asset allocation has drifted from its target. As the strategy's name implies, the only variable taken into consideration is time. Determining the frequency with which to rebalance the portfolio largely depends on the investor's risk tolerance, the correlation of the portfolio's assets, and the costs involved in rebalancing.

The data in **Figure 6**, on page 8, compare results for the "time-only" rebalancing strategy using several different frequencies: monthly, quarterly, annually, and never.⁶ The target asset allocation used in the figure is 60% stocks/40% bonds, and the time period is 1926 through 2009. The figure assumes that each portfolio is rebalanced at the predetermined interval, regardless of the magnitude of deviation from the target asset allocation. As the figure shows, the portfolio that was rebalanced monthly had an average equity allocation of 60.1% (and an average return of +8.5%); similarly, the portfolio that was rebalanced annually had an average equity allocation of 60.5% (and an average return of +8.6%)—not a substantial difference in either respect.

⁶ Although daily rebalancing is certainly an option, we excluded this option from the chart because of the limited availability of daily return data.

Figure 6. Comparing portfolio rebalancing results for 'time-only' strategy: Various frequencies, 1926 through 2009							
Monitoring frequency	Monthly	Quarterly	Annually	Never			
Minimum rebalancing threshold	0%	0%	0%	None			
Average equity allocation	60.1%	60.2%	60.5%	84.1%			
Costs of rebalancing							
Annual turnover	2.7%	2.2%	1.7%	0.0%			
Number of rebalancing events	1,008	335	83	0			
Absolute framework							
Average annualized return	8.5%	8.6%	8.6%	9.1%			
Volatility	12.1%	12.2%	11.9%	14.4%			

Notes: This illustration does not represent the return on any particular investment. Assumes a portfolio of 60% stocks/40% bonds. All returns are in nominal U.S. dollars. For benchmark data, see box on page 2. There were no new contributions or withdrawals. Dividend payments were reinvested in equities; interest payments were reinvested in bonds. There were no taxes. All statistics were annualized.

Sources: Vanguard's calculations, using data from Standard & Poor's, Wilshire, MSCI, Citigroup, and Barclays Capital.

The question then becomes: Which frequency is preferred? The answer depends primarily on investor preference—the amount of deviation from the target that the investor is comfortable with, as well as the costs the investor is willing to incur, given the degree of variation. The number of rebalancing events was significantly higher for monthly rebalanced than for annually rebalanced portfolios (1,008 versus 83, respectively, in Figure 6), which would result in higher trading costs for the monthly rebalanced portfolio. In addition, the quarterly rebalanced portfolio provided the same average annualized return as the annually rebalanced portfolios (+8.6%); however, the quarterly rebalanced portfolio had significantly more rebalancing events (335 versus 83), the cost of which would likely result in a lower total return for the portfolio.

As stated previously, while there is little difference among the results for the rebalanced portfolios using this strategy, a significant difference *does* exist between the results of the portfolios that were rebalanced and the never-rebalanced portfolio. The never-rebalanced portfolio in Figure 6 drifted to an average equity allocation of about 84%. Here again, as the portfolio's equity exposure increased, the portfolio displayed higher risk (a standard deviation of 14.4%, versus 11.9% for the annually rebalanced portfolio, 12.2% for the quarterly balanced

portfolio, and 12.1% for the monthly rebalanced portfolio) and a higher average annualized return (+9.1% for the never-rebalanced, versus +8.5%, +8.6%, and +8.6% for the monthly, quarterly, and annually rebalanced portfolios, respectively).

Strategy #2: 'Threshold-only'

The second strategy, "threshold-only," ignores the time aspect of rebalancing. Investors following this strategy rebalance the portfolio only when the portfolio's asset allocation has drifted from the target asset allocation by a predetermined minimum rebalancing threshold such as 1%, 5%, or 10%, regardless of the frequency. The rebalancing events could be as frequent as daily or as infrequent as every five years, depending on the portfolio's performance relative to its target asset allocation.

To analyze the impact of threshold-only rebalancing strategies, we conducted a historical analysis for rebalancing thresholds of 1%, 5%, and 10%, assuming *daily* monitoring. If the hypothetical portfolio's allocation drifted beyond the threshold on any given day, it would be rebalanced back to the target allocation. Due to the limited availability of daily data (and therefore lack of comparability to the other figures in the body of this paper), the details of the analysis are included in Appendix B (see Figures B-1, B-2, B-3, and B-4).

Figure 7. Comparing portfolio rebalancing results for 'time-and-threshold' strategy: Various frequencies and thresholds, 1926 through 2009

Monitoring frequency	Monthly	Monthly	Monthly	Monthly	Quarterly	Quarterly	Quarterly	Annually	Annually	Annually	Never
Minimum rebalancing											
threshold	0%	1%	5%	10%	1%	5%	10%	1%	5%	10%	None
Average equity allocation	60.1%	60.1%	61.2%	61.6%	60.2%	60.9%	62.6%	60.5%	60.7%	63.0%	84.1%
Costs of rebalancing											
Annual turnover	2.7%	2.3%	1.7%	1.3%	2.2%	1.7%	1.5%	1.7%	1.6%	1.4%	0.0%
Number of rebalancing events	1,008	389	58	20	210	50	21	72	28	15	0
Absolute framework											
Average annualized return	8.5%	8.5%	8.6%	8.8%	8.7%	8.8%	8.9%	8.6%	8.6%	8.7%	9.1%
Volatility	12.1%	12.1%	12.2%	12.2%	12.2%	12.1%	12.3%	11.9%	11.8%	12.1%	14.4%

Notes: This illustration does not represent the return on any particular investment. Assumes a portfolio of 60% stocks/40% bonds. All returns are in nominal U.S. dollars. For benchmark data, see box on page 2. There were no new contributions or withdrawals. Dividend payments were reinvested in equities; interest payments were reinvested in bonds. There were no taxes. All statistics were annualized.

Sources: Vanguard's calculations, using data from Standard & Poor's, Wilshire, MSCI, Citigroup, and Barclays Capital.

Again with this strategy, the magnitude of the differences in the average equity allocation, in the average annual return, and in the volatility may not warrant the additional costs associated with a 0% threshold (5,323 rebalancing events) versus a 10% threshold (4 rebalancing events). The primary drawback to the threshold-only strategy is that it requires daily monitoring, which investors can either perform themselves or pay an advisor to do for them (which ultimately lowers the portfolio's total return because of the additional cost). The preferred strategy depends primarily on investor preference.

Strategy #3: 'Time-and-threshold'

The final strategy discussed here, "time-and-threshold," calls for rebalancing the portfolio on a scheduled basis (e.g., monthly, quarterly, or annually), but only if the portfolio's asset allocation has drifted from its target asset allocation by a predetermined minimum rebalancing threshold such as 1%, 5%, or 10%. If, as of the scheduled rebalancing date, the portfolio's deviation from the target asset allocation is less than the predetermined threshold, the portfolio will not be rebalanced. Likewise, if the portfolio's asset allocation drifts by the minimum threshold or more at any *intermediate* time interval, the portfolio will not be rebalanced at that time.

To analyze the impact of time-and-threshold rebalancing strategies, we conducted a historical analysis over the period 1926 through 2009 on the performance of several hypothetical portfolios.

Figure 7 summarizes the results for monthly, quarterly, and annual monitoring frequencies with 1%, 5%, and 10% minimum rebalancing thresholds, as well as the results for a never-rebalanced portfolio. Using this strategy, for example, if a portfolio is monitored monthly with a 1% threshold, it will be rebalanced if its actual asset allocation differs from its target asset allocation by 1% or more on the monthly rebalancing date.

We compared the risk-and-return characteristics produced by the time-and-threshold strategy relative to a target asset allocation of 60% equities/40% bonds. The target allocation was rebalanced monthly regardless of the magnitude of the allocation drift (0% minimum rebalancing threshold). A portfolio that was rebalanced more frequently, either because it was monitored more frequently or because it had tighter rebalancing thresholds, tracked the target asset allocation more closely. However, the magnitude of the differences in the average annualized returns and volatility was relatively insignificant.

As Figure 7 demonstrates, a rebalancing strategy that included monthly monitoring and 1% thresholds was more costly to implement (389 rebalancing events, with annual portfolio turnover of 2.3%) than one that included annual monitoring and 10% rebalancing thresholds (15 rebalancing events and annual portfolio turnover of 1.4%).

Although this simulation implies that portfolios that are rebalanced more frequently track the target asset allocation more closely, it also suggests that the cost of rebalancing may place upper limits on the optimal number of rebalancing events. Transaction costs and taxes detract from the portfolio's return, potentially undermining the risk-control benefits of some rebalancing strategies. In our simulation, the number of rebalancing events and the annual turnover were proxies for costs; the actual costs depend on a portfolio's unique transaction costs and taxes.

After taking into consideration reasonable expectations regarding return patterns, average returns, and risk, we concluded that for most broadly diversified stock and bond fund portfolios, annual or semiannual monitoring, with rebalancing at 5% thresholds, produces a reasonable balance between risk control and cost minimization.

There are two important qualifications to this conclusion. First, this analysis assumes that some approximation of the stock and bond markets' historical return patterns, average returns, volatility, and low return correlation can be expected to persist in the future. Second, our analysis assumes that a portfolio holds a broadly diversified group of liquid assets with readily available market prices.⁷

Implementing a rebalancing strategy

In translating this conceptual rebalancing framework into practical strategies, it's important to recognize two real-world limitations to the framework's assumptions. First, conventional wisdom among financial practitioners suggests that investor preferences may be less precise than theory assumes. Investors' target asset allocations are typically flexible within 5% to 10% ranges, indicating that they are mostly indifferent to small risk-or-return deviations. Second, some costs of rebalancing—time, labor, and market impact—are difficult to quantify. Such costs are often included indirectly in advisory fees or reflected as trading restrictions, making it difficult to explicitly consider rebalancing costs. Several practical strategies discussed next aim to capture the risk-control benefits illustrated by our theoretical framework while minimizing the costs of rebalancing.

Rebalance with portfolio cash flows. Rebalancing a portfolio with dividends, interest payments, realized capital gains, or new contributions can help investors both exercise risk control and trim the costs of rebalancing. Typically, investors can accomplish this by sweeping their taxable portfolio cash flows into a money market or checking account and then redirecting these flows to the most underweighted asset class as part of their scheduled rebalancing event.⁸

⁷ A concentrated or aggressive, actively managed portfolio of stocks and bonds may also behave differently from our illustrated examples. Such portfolios tend to be more volatile than broadly diversified stock and bond portfolios, requiring more frequent rebalancing to maintain similar risk control relative to the target asset allocation.

⁸ The sweep process just described can improve the after-tax return of the portfolio at the margin; however, investors should weigh the time and effort required against the potential increased returns.

Figure 8. Impact of rebalancing with portfolio cash flows: 1926 through 2009						
Monitoring frequency	Monthly	Monthly	Quarterly	Annually	Never	Income
Minimum rebalancing threshold	0%	5%	5%	5%	None	None
Average equity allocation	60.1%	61.2%	60.9%	60.7%	84.1%	61.0%
Costs of rebalancing						
Annual turnover	2.7%	1.7%	1.7%	1.6%	0.0%	0.0%
Number of rebalancing events	1,008	58	50	28	0	0
Absolute framework						
Average annualized return	8.5%	8.6%	8.8%	8.6%	9.1%	8.5%
Volatility	12.1%	12.2%	12.1%	11.8%	14.4%	11.3%

Notes: This illustration does not represent the return on any particular investment. All returns are in nominal U.S. dollars. For benchmark data, see box on page 2. There were no new contributions or withdrawals. Except in the "Income" column, dividend payments were reinvested in equities; interest payments were reinvested in bonds. The "Income" column shows a 60% stock/40% bond portfolio that was rebalanced by investing the portfolio's dividend and interest payments in the underweighted asset class from 1926 through 2009. There were no taxes. All statistics were annualized.

Sources: Vanguard's calculations, using data from Standard & Poor's, Wilshire, MSCI, Citigroup, and Barclays Capital.

Figure 8 illustrates how dividend and interest payments can be used to reduce potential rebalancing costs for several hypothetical portfolios. The "Income" column shows a 60% stock/40% bond portfolio that was rebalanced by investing the portfolio's dividend and interest payments in the underweighted asset class from 1926 through 2009. An investor who had simply redirected his or her portfolio's income would have achieved most of the risk-control benefits of more labor- and transaction-intensive rebalancing strategies at a much lower cost.

For example, a portfolio that was monitored monthly and rebalanced at 5% thresholds had 58 rebalancing events and annual portfolio turnover of 1.7% (see Figure 8). The portfolio that was rebalanced by simply redirecting income had no rebalancing events and portfolio turnover of 0%. For taxable investors, this strategy was also very tax-efficient. The differences in risk among the various rebalancing strategies were very modest. One caution: The high levels of dividends and interest rates during this 84-year period may not be available in the future. An effective

approach independent of the level of dividends and bond yields is to use portfolio contributions and withdrawals to rebalance the portfolio. However, the potential tax consequences of these transactions may require more customized rebalancing strategies.

Rebalance to target asset allocation or some intermediate asset allocation. Finally, the decision to rebalance either to the target asset allocation or to some intermediate allocation (an allocation short of the target allocation) depends primarily on the type of rebalancing costs. When trading costs are mainly fixed and independent of the size of the trade—the cost of time, for example—rebalancing to the target allocation is optimal because it reduces the need for further transactions. On the other hand, when trading costs are mainly proportional to the size of the trade—as in commissions or taxes, for example—rebalancing to the closest rebalancing boundary is optimal, minimizing the size of the transaction. If both types of costs exist, the optimal strategy is to rebalance to some intermediate point.

Conclusion

Just as there is no universally optimal asset allocation, there is no universally optimal rebalancing strategy. The only clear advantage as far as maintaining a portfolio's risk-and-return characteristics is that a rebalanced portfolio more closely aligns with the characteristics of the target asset allocation than with a never-rebalanced portfolio. As our analysis shows, the risk-adjusted returns are not meaningfully different whether a portfolio is rebalanced monthly, quarterly, or annually; however, the number of rebalancing events and resulting costs increase significantly. As a result, we conclude that a rebalancing strategy based on reasonable monitoring frequencies (such as annual or semiannual) and reasonable allocation thresholds (variations of 5% or so) is likely to provide sufficient risk control relative to the target asset allocation for most portfolios with broadly diversified stock and bond holdings.

References

Brinson, Gary P., L. Randolph Hood, and Gilbert L. Beebower, 1986. Determinants of Portfolio Performance. *Financial Analysts Journal* 42(4): 39–48.

Brinson, Gary P., Brian D. Singer, and Gilbert L. Beebower, 1991. Determinants of Portfolio Performance II: An Update. *Financial Analysts Journal* 47(3): 40–48.

Davis, Joseph H., Francis M. Kinniry Jr., and Glenn Sheay, 2007. *The Asset Allocation Debate: Provocative Questions, Enduring Realities*. Valley Forge, Pa.: The Vanguard Group.

Ibbotson, Roger G., and Paul D. Kaplan, 2000. Does Asset Allocation Policy Explain 40, 90, or 100 Percent of Performance? *Financial Analysts Journal* 56(1): 26–33.

Leland, Hayne E., 1999. *Optimal Portfolio Management With Transactions Costs and Capital Gains Taxes*. Research Program in Finance Working Paper No. 290. Berkeley, Calif.: Institute of Business and Economic Research, University of California.

Pliska, Stanley R., and Kiyoshi Suzuki, 2004. Optimal Tracking for Asset Allocation With Fixed and Proportional Transaction Costs. *Quantitative Finance* 4(2): 233–43.

Vanguard Group, The, 2003. Sources of Portfolio Performance: The Enduring Importance of Asset Allocation. Valley Forge, Pa.: The Vanguard Group.

Appendix A. Underlying return data for Figure 3

Figure A-1. Equity returns following rebalancing events: 1926 through 2009 5-year return 10-year return 15-year return 20-year return For the year ended: (annualized) (annualized) (annualized) (annualized) 1930 3.2% 1.8% 6.6% 7.4% 1931 22.4 6.4 10.1 11.7 1937 4.5 9.5 12.7 12.9 1974 18.6 16.4 17.3 15.1 2000 2.1 TBD TBD TBD 2002 14.0 TBD TBD TBD 2008 TBD TBD TBD TBD

Notes: Figure assumes a 60% stock/40% bond portfolio and annual rebalancing with a threshold of 5%. All returns are in nominal U.S. dollars; TBD = to be determined. For benchmark data, see box on page 2.

Sources: Vanguard calculations, using data from Standard & Poor's, Wilshire, and MSCI.

Figure A-2. Fixed income returns following rebalancing events: 1926 through 2009								
For the year ended:	5-year return (annualized)	10-year return (annualized)	15-year return (annualized)	20-year return (annualized)				
1930	8.4%	6.5%	5.5%	4.6%				
1931	10.3	7.0	5.7	4.5				
1937	3.8	3.0	2.6	2.3				
1974	7.3	9.9	10.7	9.9				
2000	5.9	TBD	TBD	TBD				
2002	4.4	TBD	TBD	TBD				
2008	TBD	TBD	TBD	TBD				

Notes: Figure assumes a 60% stock/40% bond portfolio and annual rebalancing with a threshold of 5%. All returns are in nominal U.S. dollars; TBD = to be determined. For benchmark data, see box on page 2.

Sources: Vanguard calculations, using data from Standard & Poor's, Citigroup, and Barclays Capital.

Appendix B. 'Threshold-only' rebalancing analysis

To analyze the impact of "threshold-only" rebalancing strategies, we conducted a historical analysis for minimum rebalancing thresholds of 0%, 1%, 5%, and 10%, assuming daily monitoring of a hypothetical 60% stock/40% bond portfolio. If the portfolio's allocation drifted beyond the rebalancing threshold on any given day, it would be rebalanced back to the target allocation.

As shown in Figure B-1, the portfolio that is rebalanced daily with no threshold over the period 1989 through 2009 had an average equity allocation of 60.0% (and an average annualized return of +8.9%), whereas the portfolio that was monitored on a daily basis with a 10% threshold had an average equity allocation of 62.2% (and an average return of +9.0%).

Once again the magnitude of the differences in the average equity allocation, the average annualized return, and the volatility may not warrant the additional costs associated with a 0% threshold (5,323 rebalancing events) versus a 10% threshold (4 rebalancing events). The chosen strategy depends primarily on investor preference.

Appendix Figures B-2, B-3, and B-4 have been included for comparison purposes and are based on data from 1989 through 2009.

Figure B-1. Comparing daily portfolio rebalar Various thresholds, 1989 through	· ·	nly' strategy:			
Monitoring frequency	Daily	Daily	Daily	Daily	Never
Minimum rebalancing threshold	0%	1%	5%	10%	None
Average equity allocation	60.0%	60.1%	61.7%	62.2%	69.2%
Costs of rebalancing					
Annual turnover	12.5%	7.9%	3.1%	1.8%	0.0%
Number of rebalancing events	5,323	270	14	4	0
Absolute framework					
Average annualized return	8.9%	8.9%	8.9%	9.0%	8.6%
Volatility	12.9%	12.9%	13.0%	13.0%	10.9%

Notes: This hypothetical illustration does not represent the return on any particular investment. Assumes a portfolio of 60% stocks/40% bonds. All returns are in nominal U.S. dollars. Stocks are represented by the Wilshire 5000 Composite Index from January 1, 1989, through April 22, 2005; and the MSCI US Broad Market Index from April 23, 2005, through December 31, 2009. Bonds are represented by the Barclays Capital U.S. Aggregate Bond Index from 1989 through 2009. There were no new contributions or withdrawals. Dividend payments were reinvested in equities; interest payments were reinvested in bonds. There were no taxes. All statistics were annualized.

Sources: Vanguard calculations, using data from Wilshire, MSCI, and Barclays Capital.

Limited availability of daily return data

It is important to note that the average *annualized* returns for the 60% stock/40% bond portfolio in Figure B-1, which incorporates *daily* returns, are higher than those of tables in the body of this paper, owing to the fact that the returns here are based on the period 1989 through 2009, whereas all the other returns in the paper (except where noted) are based on data from 1926 through 2009. The shorter time period was necessitated due

to the limited availability of reliable daily data. Accompanying this appendix are comparable tables for monthly, quarterly, and annual rebalancing statistics for the period 1989 through 2009. These tables have been added for comparison purposes. We believe that incorporating the longer time series provides more valuable insight and have only included the 1989 through 2009 results because of the limited availability of daily returns.

Figure B-2.	Comparing monthly portfolio rebalancing results for 'threshold-only' strategy:
	Various thresholds, 1989 through 2009

Monitoring frequency	Monthly	Monthly	Monthly	Monthly	Never
Minimum rebalancing threshold	0%	1%	5%	10%	None
Average equity allocation	60.0%	60.1%	61.5%	62.2%	69.2%
Costs of rebalancing					
Annual turnover	5.6%	4.4%	2.8%	1.9%	0.0%
Number of rebalancing events	252	79	12	4	0
Absolute framework					
Average annualized return	8.8%	8.8%	8.9%	9.1%	8.6%
Volatility	9.5%	9.5%	9.6%	9.6%	10.9%

Notes: This hypothetical illustration does not represent the return on any particular investment. Assumes a portfolio of 60% stocks/40% bonds. All returns are in nominal U.S. dollars. Stocks are represented by the Wilshire 5000 Composite Index from January 1, 1989, through April 22, 2005; and the MSCI US Broad Market Index from April 23, 2005, through December 31, 2009. Bonds are represented by the Barclays Capital U.S. Aggregate Bond Index from 1989 through 2009. There were no new contributions or withdrawals. There were no taxes. Dividend payments were reinvested in equities; interest payments were reinvested in bonds.

Sources: Vanguard calculations, using data from Wilshire, MSCI, and Barclays Capital.

Figure B-3. Comparing quarterly portfolio rebalancing results for 'threshold-only' strategy: Various thresholds, 1989 through 2009

Monitoring frequency	Quarterly	Quarterly	Quarterly	Quarterly	Never
Minimum rebalancing threshold	0%	1%	5%	10%	None
Average equity allocation	60.1%	60.1%	61.4%	62.3%	69.2%
Costs of rebalancing					
Annual turnover	4.2%	4.0%	2.9%	2.0%	0.0%
Number of rebalancing events	83	43	11	4	0
Absolute framework					
Average annualized return	8.9%	8.9%	9.0%	9.1%	8.6%
Volatility	9.5%	9.5%	9.5%	9.6%	10.9%

Notes: This hypothetical illustration does not represent the return on any particular investment. Assumes a portfolio of 60% stocks/40% bonds. All returns are in nominal U.S. dollars. Stocks are represented by the Wilshire 5000 Composite Index from January 1, 1989, through April 22, 2005; and the MSCI US Broad Market Index from April 23, 2005, through December 31, 2009. Bonds are represented by the Barclays Capital U.S. Aggregate Bond Index from 1989 through 2009. There were no new contributions or withdrawals. There were no taxes. Dividend payments were reinvested in equities; interest payments were reinvested in bonds.

Sources: Vanguard calculations, using data from Wilshire, MSCI, and Barclays Capital.

Figure B-4. Comparing annual portfolio rebalancing results for 'threshold-only' strategy: Various thresholds, 1989 through 2009

Monitoring frequency	Annually	Annually	Annually	Annually	Never
Minimum rebalancing threshold	0%	1%	5%	10%	None
Average equity allocation	60.2%	60.2%	61.2%	61.2%	69.2%
Costs of rebalancing					
Annual turnover	2.8%	2.8%	2.8%	2.0%	0.0%
Number of rebalancing events	20	16	8	4	0
Absolute framework					
Average annualized return	9.0%	9.0%	9.1%	9.0%	8.6%
Volatility	9.4%	9.4%	9.4%	9.5%	10.9%

Notes: This hypothetical illustration does not represent the return on any particular investment. Assumes a portfolio of 60% stocks/40% bonds. All returns are in nominal U.S. dollars. Stocks are represented by the Wilshire 5000 Composite Index from January 1, 1989, through April 22, 2005; and the MSCI US Broad Market Index from April 23, 2005, through December 31, 2009. Bonds are represented by the Barclays Capital U.S. Aggregate Bond Index from 1989 through 2009. There were no new contributions or withdrawals. There were no taxes. Dividend payments were reinvested in equities; interest payments were reinvested in bonds.

Sources: Vanguard calculations, using data from Wilshire, MSCI, and Barclays Capital.

P.O. Box 2600 Valley Forge, PA 19482-2600

Connect with Vanguard® > Vanguard.com

> global.vanguard.com (non-U.S. investors)

Vanguard research >

Vanguard Center for Retirement Research Vanguard Investment Counseling & Research Vanguard Investment Strategy Group

E-mail > research@vanguard.com

 \textit{CFA}^{\circledR} is a trademark owned by CFA Institute.

Standard & Poor's®, S&P®, and S&P 500® are registered trademarks of Standard & Poor's Financial Services LLC ("S&P") and have been licensed for use by The Vanguard Group, Inc. The Vanguard mutual funds are not sponsored, endorsed, sold, or promoted by S&P or its Affiliates, and S&P and its Affiliates make no representation, warranty, or condition regarding the advisability of buying, selling, or holding units/shares in the funds.

The funds or securities referred to herein are not sponsored, endorsed, or promoted by MSCI, and MSCI bears no liability with respect to any such funds or securities. For any such funds or securities, the prospectus or the *Statement of Additional Information* contains a more detailed description of the limited relationship MSCI has with The Vanguard Group and any related funds.